Wind Energy Conversion System Connected With Grid Using Permanent Magnet Synchronous Generator (PMSG)
نویسندگان
چکیده
This paper deals with permanent magnet synchronous generator (PMSG) based wind energy conversion system (WECS) integrated with grid with two back to back connected converters with a common DC link. The aim of this research is to model control of direct driven 1.5 MW wind turbine permanent magnetic synchronous generator (PMSG) which feeds alternating current (AC) power to the utility grid .The machine side converter is used to extract maximum power from the wind. In this paper a study of WECS is done by using a constant speed direct-driven wind turbine in Matlab. Moreover, by maintaining the dc link voltage at its reference value, the output ac voltage of the inverter can be kept constant irrespective of variations in the wind speed and load. An effective control techniques to extract maximum power from wind turbine is maximum power point tracking controller (MPPT), grid side controller also called voltage controller, pitch controller, phase lock loop controller (PLL) also used in this project, transformer used for isolation purpose, crow bar circuit used for protection the whole system. KEYWORDS-Permanent magnet synchronous generator(PMSG), wind energy conversion system(WECS), back to back PWM converter IGBT based, DC link capacitor, Direct-Driven, MPPT controller, PLL loop, generator side converter control, grid side converter control, pitch controller, crow bar protection and transformer.
منابع مشابه
Modeling of a Rectifier Connected PMSG Applied in Wind Energy Conversion System Using State Machine Approach
Accurate modeling of the wind energy conversion system is necessary to design and implementation of the control loop for the generator and the frequency converter, in order to extract maximum power from the wind and to investigate the effects of interconnection between wind farms and power system. In this paper the combination of a permanent magnet synchronous generator loaded with a diode rect...
متن کاملModeling of a Rectifier Connected PMSG Applied in Wind Energy Conversion System Using State Machine Approach
Accurate modeling of the wind energy conversion system is necessary to design and implementation of the control loop for the generator and the frequency converter, in order to extract maximum power from the wind and to investigate the effects of interconnection between wind farms and power system. In this paper the combination of a permanent magnet synchronous generator loaded with a diode rect...
متن کاملA New DPC-SVM for Matrix Converter Used in Wind Energy Conversion System Based on Multiphase Permanent Magnet Synchronous Generator
This paper proposes a novel wind energy conversion system based on a Five-phase Permanent Magnetic Synchronous Generator (5-PMSG) and a Five to three Matrix Converter (5-3MC). The low cost and volume and also eliminating grid side converter controller are attractive aspects of the proposed topology compared to the conventional with back-to-back converters. The control of active and reactive pow...
متن کاملHysteresis Current Controller Based Grid Connected Wind Energy Conversion System for Permanent Magnet Synchronous Generator and Quasi Z-Source Inverter Using Power Quality Improvement
Wind energy is a leader area of application for variable-speed generators operating on the constant grid frequency. This paper depicts the power quality enhancement in wind power system using permanent magnet synchronous generator (PMSG) and Quasi Z-source Inverter. The PMSG is connected to the power network by means of a quasi z-source inverter (qZSI). The PMSG are used by these technologies d...
متن کاملOptimal Torque Control of PMSG-based Stand-Alone Wind Turbine with Energy Storage System
In this paper optimal torque control (OTC) of stand-alone variable-speed small-scale wind turbine equipped with a permanent magnet synchronous generator and a switch- mode rectifier is presented. It is shown that with OTC method in standalone configuration, power coefficient could be reached to its maximum possible value, i.e. 0.48. An appropriate control algorithm based on turbine characterist...
متن کامل